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OS security/isolation strategies are fixed at design time!
Isolation granularity, underlying mechanisms, data sharing strategies (copy/share)

Removing user-kernel 
separation?

Using hardware capabilities?

Memory Protection Keys?
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Decouple security/isolation decisions from the OS design

Achieve a range of trade-
offs instead of a single 
point in the design space

Support a range of 
isolation mechanisms and 
granularities
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Deployment to heterogeneous hardware
Make optimal use of each machine/architecture's 
safety mechanisms with the same code Quickly isolate vulnerable libraries

React easily and quickly to newly published 
vulnerabilities while waiting for a full patch

Incremental verification of code-bases
Mix and match verified and non-verified code-bases 
while preserving guarantees
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...the more applications run together, the least 
specialization you can achieve

1 Focus on single-purpose appliances such as cloud microservices
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1

Embrace the library OS philosophy: everything is a library... 
network stack, nginx, libopenssl, sound driver, etc.

Focus on single-purpose appliances such as cloud microservices

Full-system (OS+app) understanding of compartmentalization 2

Not "only application" or "only kernel": 
consider everything and specialize
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Abstract away the technical details of isolation mechanisms3

Full-system (OS+app) understanding of compartmentalization 2
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Page table, MPK, CHERI, TEEs? Not the same guarantees, 
but a similar interface can be achieved.

Focus on single-purpose appliances such as cloud microservices1

Abstract away the technical details of isolation mechanisms3

Full-system (OS+app) understanding of compartmentalization 2
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Focus on single-purpose appliances such as cloud microservices1

Abstract away the technical details of isolation mechanisms3

Flexibility must not get into the way of performance 4

Full-system (OS+app) understanding of compartmentalization 2
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compartments:
- comp1:
mechanism: intel-mpk
default: True

- comp2:
mechanism: intel-mpk

hardening: [cfi, asan]
libraries:
- libredis: comp1
- libopenjpg: comp2
- lwip: comp2

"Redis image with two compartments, 
isolate libopenjpeg and lwip together"

config.yaml

FlexOS Toolchain
1 Input config

Happy users
config.yaml
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Reuse libraries as finest 
granularity of 
compartmentalization

Based on a highly modular LibOS design (Unikraft)

boot sched mm

ssl jpeg

vfs ...

nginx

ramfs

Core Libraries

Kernel & User Libs

Such libOSes are composed 
of fine-granular, 
independent libraries

Define them as part 
of the FlexOS API

Cross-library calls and 
shared data are replaced by 
an abstract construct (gates, 
data sharing primitives)

"Pre-compartmentalize" them

At build time, these abstract 
constructs are replaced with a 
particular implementation by the 
toolchain. These implementations 
are defined by the backends.

MPK VMs TEEs ...



FlexOS 101: Compartmentalization API

46

int rc, connfd;
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int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);
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int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

int rc, connfd;
char buf[512] __attribute__((flexos_share));
/* … */
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Porting

Annotate shared data

Add gate placeholders

int rc, connfd;
char *buf[512] = shared_malloc(512);
/* … */
rc = mpk_gate(0, 1, recv, connfd, buf, 512, 0);

Automatic gate 
instantiation at 
build time Coccinelle
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app

1

0

Replace with shared heap allocation
Replace with MPK gate

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

lwip + appReplace with 
normal stack 
allocation

Replace with 
function call
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Port of libraries: network stack, scheduler, filesystem, time subsystem
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Implementation on top of Unikraft

Backend implementations for Intel MPK and VMs (EPT)

Port of libraries: network stack, scheduler, filesystem, time subsystem

Port of applications: Redis, Nginx, SQLite, iPerf server

This talk: focus on demonstrating flexibility and performance

more results in our paper
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FlexOS libraries used in the Redis image 
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One configuration and its associated performance 
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Compartment 1 Compartment 2 Compartment 3
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Runtime performance with Redis in requests/s

FlexOS libraries used in the Redis image 
(only a subset for readability):
• Redis application
• C standard library (newlib)
• FlexOS scheduler (uksched)
• Network stack (lwip)

One configuration and its associated performance 
(80 configurations in total)

The color of boxes indicates the compartment:

Compartment 1 Compartment 2 Compartment 3

The dot whether hardening (ASan, Safestack, etc.) is enabled:

Hardening on Hardening off
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Compartment 1 Compartment 2 Compartment 3Hardening on Hardening off

1.2M requests/s292K requests/s
Large safety / performance space! (4x)1
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Compartment 1 Compartment 2 Compartment 3Hardening on Hardening off

1.2M requests/s292K requests/s
Large safety / performance space! (4x)1

Smooth slope, performance degrades gracefully2
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Compartment 1 Compartment 2 Compartment 3Hardening on Hardening off
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...

lwip

uksched

...

Performance-wise:

=
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Similar performance, very different properties!3

need to reason about communication patterns, fast paths
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Compartment 1 Compartment 2 Compartment 3Hardening on Hardening off

lwip

uksched

...

lwip

uksched

...

Performance-wise:

=

2 crossings

2 crossings

Similar performance, very different properties!3

need to reason about communication patterns, fast paths

You can get some safety for 
free by exploring intelligently
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Time to perform 10K SQLite INSERT queries in seconds
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Time to perform 10K SQLite INSERT queries in seconds

Number of compartments and mechanism (e.g., PT2 = 2 
compartments with the page table)
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Time to perform 10K SQLite INSERT queries in seconds

Number of compartments and mechanism (e.g., PT2 = 2 
compartments with the page table)

VMM/environment
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No overhead when disabling isolation – you only pay for what you get1
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The MPK backend compares very positively to competing solutions2
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The MPK backend compares very positively to competing solutions2

Tricky comparison with CubicleOS - they're using linuxu, a Linux userland 
debug platform of Unikraft

1.96x

2.37x
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The EPT backend too compares positively to competing solutions3
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uksched

nginx
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ASan

ASan
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nginx
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ASanSafeStack>
<
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Now, we've a nice framework!

We can leverage FlexOS to get the most secure image for a given 
performance budget!

Problem: some configurations are not comparable

lwip

uksched

nginx

...

ASan

ASan

lwip

uksched

nginx

...

ASanSafeStack>
<
=

How can we reason about 
security/performance 
trade-offs?
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partially ordered set (poset)
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What we propose: consider configurations as a 
partially ordered set (poset)

-
-

ASan
-

-
ASan

SafeStack
-

SafeStack

Both
ASan

SafeStack
Both Both

SafeStack
ASan
Both

Both
Both

ASan
SafeStack

ASan
ASan

SafeStack
ASan

SafeStack
SafeStack

...

...

Two configurations that do not share a 
path are simply not comparable

Both
ASan

SafeStack
Both

ASan
- ASan

ASan
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We can then label each node with performance 
characteristics (in practice no need to label everything)

-
-

ASan
-

-
ASan

SafeStack
-

SafeStack

Both
ASan

SafeStack
Both Both

SafeStack
ASan
Both

Both
Both

ASan
SafeStack

ASan
ASan

SafeStack
ASan

SafeStack
SafeStack

...

...

22

19

19

20

19

17

18

16

12

09

04

11 07

11

Fictive numbers here
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Based on this ordering and labeling we can choose the 
last node of each path that satisfies the performance 
constraints

-
-

ASan
-

-
ASan

SafeStack
-

SafeStack

Both
ASan

SafeStack
Both Both

SafeStack
ASan
Both

Both
Both

ASan
SafeStack

ASan
ASan

SafeStack
ASan

SafeStack
SafeStack

...

...

22

19

19

20

19

17

18

16

12

09

04

11 07

11
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Based on this ordering and labeling we can choose the 
last node of each path that satisfies the performance 
constraints

-
-

ASan
-

-
ASan

SafeStack
-

SafeStack

Both
ASan

SafeStack
Both Both

SafeStack
ASan
Both

Both
Both

ASan
SafeStack

ASan
ASan

SafeStack
ASan

SafeStack
SafeStack

...

...

22

19

19

20

19

17

18

16

12

09

04

11 07

11

Both
ASan

Both
SafeStack

Curated list of optimal configurations

Let the user do 
the final choice
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Based on this ordering and labeling we can choose the 
last node of each path that satisfies the performance 
constraints

-
-

ASan
-

-
ASan

SafeStack
-

SafeStack

Both
ASan

SafeStack
Both Both

SafeStack
ASan
Both

Both
Both

ASan
SafeStack

ASan
ASan

SafeStack
ASan

SafeStack
SafeStack

...

...

22

19

19

20

19

17

18

16

12

09

04

11 07

11

Both
ASan

Both
SafeStack

Curated list of optimal configurations

Let the user do 
the final choice

No need to evaluate everything!
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Reduction of 80 
configurations to 5 
candidates
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There is a need for isolation flexibility
• OS Specialization, hardware heterogeneity
• or quickly react to vulnerabilities!

Current approaches: one isolation approach at design time

Decouple isolation from the OS design:
• Make isolation decisions at build time
• Explore performance v.s. security trade-offs
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Webpage: https://project-flexos.github.io/
ASPLOS'22 paper: https://owl.eu.com/papers/flexos-asplos22.pdf
Contact by e-mail: hugo.lefeuvre@manchester.ac.uk

Artifact Evaluation Repository: https://github.com/project-flexos/asplos22-ae
Distinguished Artifact Award!

Practical note: most of the bug reports are reported in the AE repository.
Also check known issues and doc in: https://github.com/project-flexos/unikraft

License: 3-Clause BSD License (like Unikraft)

https://project-flexos.github.io/
https://owl.eu.com/papers/flexos-asplos22.pdf
https://github.com/project-flexos/asplos22-ae
https://github.com/project-flexos/unikraft
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Potential of Unikraft
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Outline:

1. High-Level Presentation of FlexOS

2. Technical Intro: Hello World!

3. Technical Intro: Redis

4. Hands-On: Port Your Lib/App

Hugo Lefeuvre (The University of Manchester)
hugo.lefeuvre@manchester.ac.uk

Unikraft Lyon Hackathon, 14th May 2022
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• We set up 48 Docker Containers on an MPK-enabled machine at Manchester
• They contain everything we need for this workshop!



Get Your FlexOS Dev Shell
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• We set up 48 Docker Containers on an MPK-enabled machine at Manchester
• They contain everything we need for this workshop!

Credentials will be given during the tutorial!
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• This is a research prototype
• It has been written by a grad student with limited time
• It is not fit for production
• The VM/EPT backend that we are going to use is not the final one 

(not merged yet unfortunately)
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• This is a research prototype
• It has been written by a grad student with limited time
• It is not fit for production
• The VM/EPT backend that we are going to use is not the final one 

(not merged yet unfortunately)

But:
• It works (modulo bugs)
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Recap of the FlexOS compartmentalization process:
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Recap of the FlexOS compartmentalization process:

1. Apps/Libs are ported by an expert
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Recap of the FlexOS compartmentalization process:

1. Apps/Libs are ported by an expert
2. At build time, users define a compartmentalization conformation
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Recap of the FlexOS compartmentalization process:

1. Apps/Libs are ported by an expert
2. At build time, users define a compartmentalization conformation
3. The toolchain automatically produces a matching image
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Recap of the FlexOS compartmentalization process:

1. Apps/Libs are ported by an expert
2. At build time, users define a compartmentalization conformation
3. The toolchain automatically produces a matching image
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void callback(int foo)
{

printf("callback called!\n");
}

/* static buffer that we pass to the library */
static char static_buf[32];

/* a private static buffer */
static char static_app_secret[32];

int main(int __unused argc, char __unused *argv[])
{

/* shared stack integer */
int stack_int = 21;

/* shared stack buffer */
char stack_buf[32];

/* call library function */
lib_func(&callback, static_buf,

&stack_int, stack_buf);

return 0;
}

Application main (slightly simplified)
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void callback(int foo)
{

printf("callback called!\n");
}

/* static buffer that we pass to the library */
static char static_buf[32];

/* a private static buffer */
static char static_app_secret[32];

int main(int __unused argc, char __unused *argv[])
{

/* shared stack integer */
int stack_int = 21;

/* shared stack buffer */
char stack_buf[32];

/* call library function */
lib_func(&callback, static_buf,

&stack_int, stack_buf);

return 0;
}

Application main (slightly simplified)

We have shared callbacks
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void callback(int foo)
{

printf("callback called!\n");
}

/* static buffer that we pass to the library */
static char static_buf[32];

/* a private static buffer */
static char static_app_secret[32];

int main(int __unused argc, char __unused *argv[])
{

/* shared stack integer */
int stack_int = 21;

/* shared stack buffer */
char stack_buf[32];

/* call library function */
lib_func(&callback, static_buf,

&stack_int, stack_buf);

return 0;
}

Application main (slightly simplified)

We have shared callbacks

…shared static buffers
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void callback(int foo)
{

printf("callback called!\n");
}

/* static buffer that we pass to the library */
static char static_buf[32];

/* a private static buffer */
static char static_app_secret[32];

int main(int __unused argc, char __unused *argv[])
{

/* shared stack integer */
int stack_int = 21;

/* shared stack buffer */
char stack_buf[32];

/* call library function */
lib_func(&callback, static_buf,

&stack_int, stack_buf);

return 0;
}

Application main (slightly simplified)

We have shared callbacks

…shared static buffers

…shared stack buffers
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void callback(int foo)
{

printf("callback called!\n");
}

/* static buffer that we pass to the library */
static char static_buf[32];

/* a private static buffer */
static char static_app_secret[32];

int main(int __unused argc, char __unused *argv[])
{

/* shared stack integer */
int stack_int = 21;

/* shared stack buffer */
char stack_buf[32];

/* call library function */
lib_func(&callback, static_buf,

&stack_int, stack_buf);

return 0;
}

Application main (slightly simplified)

We have shared callbacks

…shared static buffers

…shared stack buffers

…and a library call
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$ ssh $(your container)
# cd /root/.unikraft/apps/flexos-example
# cp kraft.yaml.fcalls kraft.yaml
# kraft configure
…

Let's run it! (without isolation for now)

Why is --initrd needed? https://github.com/project-flexos/asplos22-ae/issues/1

https://github.com/project-flexos/asplos22-ae/issues/1
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$ ssh $(your container)
# cd /root/.unikraft/apps/flexos-example
# cp kraft.yaml.fcalls kraft.yaml
# kraft configure
…
# make prepare && kraft -v build --no-progress --fast --compartmentalize
…

Let's run it! (without isolation for now)

Why is --initrd needed? https://github.com/project-flexos/asplos22-ae/issues/1

https://github.com/project-flexos/asplos22-ae/issues/1
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$ ssh $(your container)
# cd /root/.unikraft/apps/flexos-example
# cp kraft.yaml.fcalls kraft.yaml
# kraft configure
…
# make prepare && kraft -v build --no-progress --fast --compartmentalize
…
# kraft run --initrd /root/img.cpio -M 200
SeaBIOS (version 1.12.0-1)
Booting from ROM..[ 0.000000] ERR: [libkvmplat] <mm.c @ 190> ...
callback called!

Let's run it! (without isolation for now)

Why is --initrd needed? https://github.com/project-flexos/asplos22-ae/issues/1

https://github.com/project-flexos/asplos22-ae/issues/1
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Recap of the FlexOS compartmentalization process:

1. Apps/Libs are ported by an expert
2. At build time, users define a compartmentalization conformation
3. The toolchain automatically produces a matching image
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$ ssh $(your container)
# cd /root/.unikraft/apps/flexos-example
# kraftcleanup
# cp kraft.yaml.mpk kraft.yaml
# rm .config && kraft configure
…

Let's run it with isolation?

kraftcleanup removes all stale source transformations
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$ ssh $(your container)
# cd /root/.unikraft/apps/flexos-example
# kraftcleanup
# cp kraft.yaml.mpk kraft.yaml
# rm .config && kraft configure
…
# make prepare && kraft -v build --no-progress --fast --compartmentalize
…

Let's run it with isolation?

kraftcleanup removes all stale source transformations
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$ ssh $(your container)
# cd /root/.unikraft/apps/flexos-example
# kraftcleanup
# cp kraft.yaml.mpk kraft.yaml
# rm .config && kraft configure
…
# make prepare && kraft -v build --no-progress --fast --compartmentalize
…
# kraft run --initrd /root/img.cpio -M 200
…

Let's run it with isolation?

kraftcleanup removes all stale source transformations
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$ ssh $(your container)
# cd /root/.unikraft/apps/flexos-example
# kraftcleanup
# cp kraft.yaml.mpk kraft.yaml
# rm .config && kraft configure
…
# make prepare && kraft -v build --no-progress --fast --compartmentalize
…
# kraft run --initrd /root/img.cpio -M 200
…

Let's run it with isolation?

kraftcleanup removes all stale source transformations

We need to port it :-)
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Application main (slightly simplified)

void callback(int foo)
{

printf("callback called!\n");
}

/* static buffer that we pass to the library */
static char static_buf[32];

/* a private static buffer */
static char static_app_secret[32];

int main(int __unused argc, char __unused *argv[])
{

/* shared stack integer */
int stack_int = 21;

/* shared stack buffer */
char stack_buf[32];

/* call library function */
lib_func(&callback, static_buf,

&stack_int, stack_buf);

return 0;
}
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Application main (slightly simplified)

__attribute__((libflexosexample_callback))
void callback(int foo)
{

printf("callback called!\n");
}

/* static buffer that we pass to the library */
static char static_buf[32];

/* a private static buffer */
static char static_app_secret[32];

int main(int __unused argc, char __unused *argv[])
{

/* shared stack integer */
int stack_int = 21;

/* shared stack buffer */
char stack_buf[32];

/* call library function */
lib_func(&callback, static_buf,

&stack_int, stack_buf);

return 0;
}

Annotate callbacks



Technical Intro: Hello World Porting

119

__attribute__((libflexosexample_callback))
void callback(int foo)
{

printf("callback called!\n");
}

/* static buffer that we pass to the library */
static char static_buf[32] __attribute__((flexos_whitelist));

/* a private static buffer */
static char static_app_secret[32];

int main(int __unused argc, char __unused *argv[])
{

/* shared stack integer */
int stack_int = 21;

/* shared stack buffer */
char stack_buf[32];

/* call library function */
lib_func(&callback, static_buf,

&stack_int, stack_buf);

return 0;
}

Application main (slightly simplified)

Annotate callbacks

Annotate static shared buffers
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__attribute__((libflexosexample_callback))
void callback(int foo)
{

printf("callback called!\n");
}

/* static buffer that we pass to the library */
static char static_buf[32] __attribute__((flexos_whitelist));

/* a private static buffer */
static char static_app_secret[32];

int main(int __unused argc, char __unused *argv[])
{

/* shared stack integer */
int stack_int __attribute__((flexos_whitelist)) = 21;

/* shared stack buffer */
char stack_buf[32] __attribute__((flexos_whitelist));

/* call library function */
lib_func(&callback, static_buf,

&stack_int, stack_buf);

return 0;
}

Application main (slightly simplified)

Annotate callbacks

Annotate static shared buffers

Annotate stack shared buffers
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__attribute__((libflexosexample_callback))
void callback(int foo)
{

printf("callback called!\n");
}

/* static buffer that we pass to the library */
static char static_buf[32] __attribute__((flexos_whitelist));

/* a private static buffer */
static char static_app_secret[32];

int main(int __unused argc, char __unused *argv[])
{

/* shared stack integer */
int stack_int __attribute__((flexos_whitelist)) = 21;

/* shared stack buffer */
char stack_buf[32] __attribute__((flexos_whitelist));

/* call library function */
flexos_gate(libflexosexample, lib_func, &callback, static_buf,

&stack_int, stack_buf);

return 0;
}

Application main (slightly simplified)

Annotate callbacks

Annotate static shared buffers

Annotate stack shared buffers

Add gate placeholders
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$ ssh $(your container)
# cd /root/.unikraft/apps/flexos-example
# kraftcleanup
# git checkout lyon-workshop-ported
# cp kraft.yaml.mpk kraft.yaml
# rm .config && kraft configure
…
# make prepare && kraft -v build --no-progress --fast --compartmentalize
…
# kraft run --initrd /root/img.cpio -M 200
SeaBIOS (version 1.12.0-1)
Booting from ROM..[ 0.000000] ERR: [libkvmplat] <mm.c @ 190> ...
callback called!

Let's run it with isolation! (MPK)

This branch = lyon-workshop, 
ported like in the previous slide
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$ ssh $(your container)
…
# kraftcleanup
# cd /root/.unikraft
# ./porthelper.sh apps/flexos-example/main.c

Insert gates using our porting helpers:
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$ ssh $(your container)
…
# kraftcleanup
# cd /root/.unikraft
# ./porthelper.sh apps/flexos-example/main.c

Insert gates using our porting helpers:

Does a pretty good job, but no rocket science. Does not handle shared data.

The true solution is in the compiler, and that's not a contribution of this paper.

(see PtrSplit @CCS'17, Cali @AsiaCCS'21, etc.)
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$ ssh $(your container)
# cd /root/.unikraft/apps/flexos-example
# kraftcleanup
# git checkout lyon-workshop-ported
# cp kraft.yaml.ept kraft.yaml
# rm .config && kraft configure
…
# make prepare && kraft -v build --fast --compartmentalize
…
# /root/.unikraft/run-ept.sh run build/flexos-example_kvm-x86_64
SeaBIOS (version 1.12.0-1)
Booting from ROM..[ 0.000000] ERR: [libkvmplat] <mm.c @ 190> ...
callback called!

Let's run it with isolation! (EPT)

Do not put --no-progress here, this 
triggers a bug in the toolchain for EPT
https://github.com/project-flexos/asplos22-ae/issues/2

Do not use kraft run here; the integration has not been merged yet...
https://github.com/project-flexos/asplos22-ae/issues/3

https://github.com/project-flexos/asplos22-ae/issues/2
https://github.com/project-flexos/asplos22-ae/issues/3
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Recap of the FlexOS compartmentalization process:

1. Apps/Libs are ported by an expert
2. At build time, users define a compartmentalization conformation
3. The toolchain automatically produces a matching image

How to inspect the transformations performed by FlexOS?

How to debug FlexOS compartmentalization issues?

How can I peek at FlexOS' internals?
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$ ssh $(your container)
# cd /root/.unikraft/apps/flexos-example

How do the transformations look?

Benefits of source transformations: use git diff and read patch output :-)
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$ ssh $(your container)
# cd /root/.unikraft/apps/flexos-example && git diff
diff --git a/main.c b/main.c
index df230c3..5f4ba6d 100644
--- a/main.c
+++ b/main.c
@@ -34,20 +34,26 @@
… <snip>
@@ -58,15 +64,18 @@ int main(int __unused argc, char __unused *argv[])

static_app_secret[0] = 'B';

/* shared stack integer used by the library */
- int stack_int __attribute__((flexos_whitelist)) = 21;
+ int * stack_int = uk_malloc(flexos_shared_alloc, sizeof(int));
+ *stack_int = 21;
… <snip>
}

How do the transformations look?

Benefits of source transformations: use git diff and read patch output :-)
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How do you debug porting issues?
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How do you debug porting issues?

# say we forgot some shared data
static_app_secret[0] = 'B';

/* shared stack integer used by the library */
- int stack_int __attribute__((flexos_whitelist)) = 21;

+ int stack_int = 21;

/* shared stack buffer that we pass to the library */
char stack_buf[32] __attribute__((flexos_whitelist));



Technical Intro: Debugging

131

How do you debug porting issues?

# say we forgot some shared data
static_app_secret[0] = 'B';

/* shared stack integer used by the library */
- int stack_int __attribute__((flexos_whitelist)) = 21;

+ int stack_int = 21;

/* shared stack buffer that we pass to the library */
char stack_buf[32] __attribute__((flexos_whitelist));$ ssh $(your container)

# …
# kraft run …
[ 0.100770] CRIT: [libkvmplat] <traps.c @ 198> Page fault at linear address 4000dff9c, rip 1962ac, regs 0x1dff50, sp
40011ffd0, our_sp 0x1dfee8, code 23
[ 0.106650] CRIT: [libkvmplat] <traps.c @ 198> PF_PK: protection key block access (WRITE)
[ 0.110337] CRIT: [libkvmplat] <traps.c @ 198> Target page 0x4000dff9c (section .heap) had key 0
[ 0.114256] CRIT: [libkvmplat] <trace.c @ 198> RIP: 00000000001962ac CS: 0008
[ 0.117436] CRIT: [libkvmplat] <trace.c @ 198> RSP: 000000040011ffd0 SS: 0010 EFLAGS: 00010202
[ 0.121292] CRIT: [libkvmplat] <trace.c @ 198> RAX: 0000000000108100 RBX: 000000040a001cc8 RCX: 000000040a001cc8
[ 0.125842] CRIT: [libkvmplat] <trace.c @ 198> RDX: 00000004000dff9c RSI: 0000000000105320 RDI: 0000000000000054
[ 0.130382] CRIT: [libkvmplat] <trace.c @ 198> RBP: 000000040011ffd0 R08: 000000040a001ca8 R09: 00000000fffffffe
[ 0.134938] CRIT: [libkvmplat] <trace.c @ 198> R10: 000000040a001ce8 R11: 00000000001b5330 R12: 00000004000dff9c
[ 0.139488] CRIT: [libkvmplat] <trace.c @ 198> R13: 000000040a001cc8 R14: 0000000005f66fa5 R15: 0000000000000001
[ 0.144041] CRIT: [libkvmplat] <traps.c @ 198> PKU: 000000003ffffff3
[ 0.146893] CRIT: [libkvmplat] <trace.c @ 198> base is 0x40011ffd0 caller is 0x1963f6
[ 0.150432] CRIT: [libkvmplat] <trace.c @ 198> base is 0x40011ffe8 caller is 0
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How do you debug porting issues?

Unikraft 0.5 (on which we based FlexOS) did not have symbolized stack traces...

# say we forgot some shared data
static_app_secret[0] = 'B';

/* shared stack integer used by the library */
- int stack_int __attribute__((flexos_whitelist)) = 21;

+ int stack_int = 21;

/* shared stack buffer that we pass to the library */
char stack_buf[32] __attribute__((flexos_whitelist));$ ssh $(your container)

# …
# kraft run …
[ 0.100770] CRIT: [libkvmplat] <traps.c @ 198> Page fault at linear address 4000dff9c, rip 1962ac, regs 0x1dff50, sp
40011ffd0, our_sp 0x1dfee8, code 23
[ 0.106650] CRIT: [libkvmplat] <traps.c @ 198> PF_PK: protection key block access (WRITE)
[ 0.110337] CRIT: [libkvmplat] <traps.c @ 198> Target page 0x4000dff9c (section .heap) had key 0
[ 0.114256] CRIT: [libkvmplat] <trace.c @ 198> RIP: 00000000001962ac CS: 0008
[ 0.117436] CRIT: [libkvmplat] <trace.c @ 198> RSP: 000000040011ffd0 SS: 0010 EFLAGS: 00010202
[ 0.121292] CRIT: [libkvmplat] <trace.c @ 198> RAX: 0000000000108100 RBX: 000000040a001cc8 RCX: 000000040a001cc8
[ 0.125842] CRIT: [libkvmplat] <trace.c @ 198> RDX: 00000004000dff9c RSI: 0000000000105320 RDI: 0000000000000054
[ 0.130382] CRIT: [libkvmplat] <trace.c @ 198> RBP: 000000040011ffd0 R08: 000000040a001ca8 R09: 00000000fffffffe
[ 0.134938] CRIT: [libkvmplat] <trace.c @ 198> R10: 000000040a001ce8 R11: 00000000001b5330 R12: 00000004000dff9c
[ 0.139488] CRIT: [libkvmplat] <trace.c @ 198> R13: 000000040a001cc8 R14: 0000000005f66fa5 R15: 0000000000000001
[ 0.144041] CRIT: [libkvmplat] <traps.c @ 198> PKU: 000000003ffffff3
[ 0.146893] CRIT: [libkvmplat] <trace.c @ 198> base is 0x40011ffd0 caller is 0x1963f6
[ 0.150432] CRIT: [libkvmplat] <trace.c @ 198> base is 0x40011ffe8 caller is 0
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How do you debug porting issues?

Unikraft 0.5 (on which we based FlexOS) did not have symbolized stack traces...

# say we forgot some shared data
static_app_secret[0] = 'B';

/* shared stack integer used by the library */
- int stack_int __attribute__((flexos_whitelist)) = 21;

+ int stack_int = 21;

/* shared stack buffer that we pass to the library */
char stack_buf[32] __attribute__((flexos_whitelist));$ ssh $(your container)

# …
# kraft run …
[ 0.100770] CRIT: [libkvmplat] <traps.c @ 198> Page fault at linear address 4000dff9c, rip 1962ac, regs 0x1dff50, sp
40011ffd0, our_sp 0x1dfee8, code 23
[ 0.106650] CRIT: [libkvmplat] <traps.c @ 198> PF_PK: protection key block access (WRITE)
[ 0.110337] CRIT: [libkvmplat] <traps.c @ 198> Target page 0x4000dff9c (section .heap) had key 0
[ 0.114256] CRIT: [libkvmplat] <trace.c @ 198> RIP: 00000000001962ac CS: 0008
[ 0.117436] CRIT: [libkvmplat] <trace.c @ 198> RSP: 000000040011ffd0 SS: 0010 EFLAGS: 00010202
[ 0.121292] CRIT: [libkvmplat] <trace.c @ 198> RAX: 0000000000108100 RBX: 000000040a001cc8 RCX: 000000040a001cc8
[ 0.125842] CRIT: [libkvmplat] <trace.c @ 198> RDX: 00000004000dff9c RSI: 0000000000105320 RDI: 0000000000000054
[ 0.130382] CRIT: [libkvmplat] <trace.c @ 198> RBP: 000000040011ffd0 R08: 000000040a001ca8 R09: 00000000fffffffe
[ 0.134938] CRIT: [libkvmplat] <trace.c @ 198> R10: 000000040a001ce8 R11: 00000000001b5330 R12: 00000004000dff9c
[ 0.139488] CRIT: [libkvmplat] <trace.c @ 198> R13: 000000040a001cc8 R14: 0000000005f66fa5 R15: 0000000000000001
[ 0.144041] CRIT: [libkvmplat] <traps.c @ 198> PKU: 000000003ffffff3
[ 0.146893] CRIT: [libkvmplat] <trace.c @ 198> base is 0x40011ffd0 caller is 0x1963f6
[ 0.150432] CRIT: [libkvmplat] <trace.c @ 198> base is 0x40011ffe8 caller is 0

# addr2line 0x00000000001962ac -e build/flexos-example_kvm-x86_64.dbg
/root/.unikraft/libs/flexos-example/isolated.c:42



Technical Intro: Debugging

134

How do you debug porting issues?

Unikraft 0.5 (on which we based FlexOS) did not have symbolized stack traces...

# say we forgot some shared data
static_app_secret[0] = 'B';

/* shared stack integer used by the library */
- int stack_int __attribute__((flexos_whitelist)) = 21;

+ int stack_int = 21;

/* shared stack buffer that we pass to the library */
char stack_buf[32] __attribute__((flexos_whitelist));$ ssh $(your container)

# …
# kraft run …
[ 0.100770] CRIT: [libkvmplat] <traps.c @ 198> Page fault at linear address 4000dff9c, rip 1962ac, regs 0x1dff50, sp
40011ffd0, our_sp 0x1dfee8, code 23
[ 0.106650] CRIT: [libkvmplat] <traps.c @ 198> PF_PK: protection key block access (WRITE)
[ 0.110337] CRIT: [libkvmplat] <traps.c @ 198> Target page 0x4000dff9c (section .heap) had key 0
[ 0.114256] CRIT: [libkvmplat] <trace.c @ 198> RIP: 00000000001962ac CS: 0008
[ 0.117436] CRIT: [libkvmplat] <trace.c @ 198> RSP: 000000040011ffd0 SS: 0010 EFLAGS: 00010202
[ 0.121292] CRIT: [libkvmplat] <trace.c @ 198> RAX: 0000000000108100 RBX: 000000040a001cc8 RCX: 000000040a001cc8
[ 0.125842] CRIT: [libkvmplat] <trace.c @ 198> RDX: 00000004000dff9c RSI: 0000000000105320 RDI: 0000000000000054
[ 0.130382] CRIT: [libkvmplat] <trace.c @ 198> RBP: 000000040011ffd0 R08: 000000040a001ca8 R09: 00000000fffffffe
[ 0.134938] CRIT: [libkvmplat] <trace.c @ 198> R10: 000000040a001ce8 R11: 00000000001b5330 R12: 00000004000dff9c
[ 0.139488] CRIT: [libkvmplat] <trace.c @ 198> R13: 000000040a001cc8 R14: 0000000005f66fa5 R15: 0000000000000001
[ 0.144041] CRIT: [libkvmplat] <traps.c @ 198> PKU: 000000003ffffff3
[ 0.146893] CRIT: [libkvmplat] <trace.c @ 198> base is 0x40011ffd0 caller is 0x1963f6
[ 0.150432] CRIT: [libkvmplat] <trace.c @ 198> base is 0x40011ffe8 caller is 0

# addr2line 0x00000000001962ac -e build/flexos-example_kvm-x86_64.dbg
/root/.unikraft/libs/flexos-example/isolated.c:42
# cat /root/.unikraft/libs/flexos-example/isolated.c
...

36 void lib_func(void (*callback)(int), char *static_buf,
37 int *stack_int, char *stack_buf)
38 {
39 /* use all arguments */
40 *static_buf = '\0';
41 *stack_buf = '\0';
42 *stack_int = 42;
43 callback(84);
44 }

...
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Stuff that we can try porting/running in isolation together:

• Libzlib + a zlib example
• Library: https://github.com/project-flexos/lib-zlib
• Application: https://github.com/project-flexos/app-zlib-example

(or whatever you want that 
runs on Unikraft)

https://github.com/project-flexos/lib-zlib
https://github.com/project-flexos/app-zlib-example
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Stuff that we can try porting/running in isolation together:

• Libzlib + a zlib example
• Library: https://github.com/project-flexos/lib-zlib
• Application: https://github.com/project-flexos/app-zlib-example

$ ssh $(your container)
# cd /root/.unikraft/apps/zlib-example && kraftcleanup
# kraft configure
…
# make prepare && kraft -v build --no-progress --fast --compartmentalize
…
# kraft run --initrd ./zlib.cpio -M 200
SeaBIOS (version 1.12.0-1)
Booting from ROM..[ 0.000000] ERR: [libkvmplat] <mm.c @ 190> ...
...

(or whatever you want that 
runs on Unikraft)

(h
o

w
 t

o
 r
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n

 it
)

https://github.com/project-flexos/lib-zlib
https://github.com/project-flexos/app-zlib-example

