
FlexOS: Illustrating the Research
Potential of Unikraft

1

Hugo Lefeuvre (The University of Manchester)
hugo.lefeuvre@manchester.ac.uk

Unikraft Lyon Hackathon, 14th May 2022

FlexOS: Illustrating the Research
Potential of Unikraft

2

Outline:

Hugo Lefeuvre (The University of Manchester)
hugo.lefeuvre@manchester.ac.uk

Unikraft Lyon Hackathon, 14th May 2022

FlexOS: Illustrating the Research
Potential of Unikraft

3

Outline:

1. High-Level Presentation of FlexOS

Hugo Lefeuvre (The University of Manchester)
hugo.lefeuvre@manchester.ac.uk

Unikraft Lyon Hackathon, 14th May 2022

FlexOS: Illustrating the Research
Potential of Unikraft

4

Outline:

1. High-Level Presentation of FlexOS

2. Technical Intro: Hello World!

Hugo Lefeuvre (The University of Manchester)
hugo.lefeuvre@manchester.ac.uk

Unikraft Lyon Hackathon, 14th May 2022

FlexOS: Illustrating the Research
Potential of Unikraft

5

Outline:

1. High-Level Presentation of FlexOS

2. Technical Intro: Hello World!

3. Technical Intro: Redis

Hugo Lefeuvre (The University of Manchester)
hugo.lefeuvre@manchester.ac.uk

Unikraft Lyon Hackathon, 14th May 2022

FlexOS: Illustrating the Research
Potential of Unikraft

6

Outline:

1. High-Level Presentation of FlexOS

2. Technical Intro: Hello World!

3. Technical Intro: Redis

4. Hands-On: Port Your Lib/App

Hugo Lefeuvre (The University of Manchester)
hugo.lefeuvre@manchester.ac.uk

Unikraft Lyon Hackathon, 14th May 2022

FlexOS: Illustrating the Research
Potential of Unikraft

7

Outline:

1. High-Level Presentation of FlexOS

2. Technical Intro: Hello World!

3. Technical Intro: Redis

4. Hands-On: Port Your Lib/App

Technical and hands-on!

Hugo Lefeuvre (The University of Manchester)
hugo.lefeuvre@manchester.ac.uk

Unikraft Lyon Hackathon, 14th May 2022

FlexOS: Illustrating the Research
Potential of Unikraft

8

Outline:

1. High-Level Presentation of FlexOS

2. Technical Intro: Hello World!

3. Technical Intro: Redis

4. Hands-On: Port Your Lib/App

Technical and hands-on!

Hugo Lefeuvre (The University of Manchester)
hugo.lefeuvre@manchester.ac.uk

Unikraft Lyon Hackathon, 14th May 2022

These slides at: https://project-flexos.github.io/slides/flexos-lyon-tutorial.pdf

https://project-flexos.github.io/slides/flexos-lyon-tutorial.pdf

FlexOS: Illustrating the Research
Potential of Unikraft

9

Outline:

1. High-Level Presentation of FlexOS

2. Technical Intro: Hello World!

3. Technical Intro: Redis

4. Hands-On: Port Your Lib/App

Hugo Lefeuvre (The University of Manchester)
hugo.lefeuvre@manchester.ac.uk

Unikraft Lyon Hackathon, 14th May 2022

These slides at: https://project-flexos.github.io/slides/flexos-lyon-tutorial.pdf

https://project-flexos.github.io/slides/flexos-lyon-tutorial.pdf

FlexOS: Towards Flexible OS Isolation

Unikraft Lyon Hackathon, 14th May 2022

Hugo Lefeuvre1, Vlad-Andrei Bădoiu2, Alexander Jung3,4, Stefan Teodorescu2,
Sebastian Rauch5, Felipe Huici6,4, Costin Raiciu2,7, Pierre Olivier1

1The University of Manchester, 2Politehnica Bucharest, 3Lancaster University, 4Unikraft.io,
5Karlsruhe Institute of Technology, 6NEC Labs Europe, 7Correct Networks

10

Current OS Designs

11

OS security/isolation strategies are fixed at design time!
Isolation granularity, underlying mechanisms, data sharing strategies (copy/share)

Current OS Designs

12

OS security/isolation strategies are fixed at design time!
Isolation granularity, underlying mechanisms, data sharing strategies (copy/share)

Current OS Designs

13

OS security/isolation strategies are fixed at design time!
Isolation granularity, underlying mechanisms, data sharing strategies (copy/share)

Current OS Designs

14

OS security/isolation strategies are fixed at design time!
Isolation granularity, underlying mechanisms, data sharing strategies (copy/share)

Removing user-kernel
separation?

Current OS Designs

15

OS security/isolation strategies are fixed at design time!
Isolation granularity, underlying mechanisms, data sharing strategies (copy/share)

Removing user-kernel
separation?

Using hardware capabilities?

Current OS Designs

16

OS security/isolation strategies are fixed at design time!
Isolation granularity, underlying mechanisms, data sharing strategies (copy/share)

Removing user-kernel
separation?

Using hardware capabilities?

Memory Protection Keys?

FlexOS: Flexible Isolation

17

Decouple security/isolation decisions from the OS design

FlexOS: Flexible Isolation

18

Decouple security/isolation decisions from the OS design

Achieve a range of trade-
offs instead of a single
point in the design space

FlexOS: Flexible Isolation

19

Decouple security/isolation decisions from the OS design

Achieve a range of trade-
offs instead of a single
point in the design space

Support a range of
isolation mechanisms and
granularities

Other Use-Cases for Flexible Isolation

20

Other Use-Cases for Flexible Isolation

21

Deployment to heterogeneous hardware
Make optimal use of each machine/architecture's
safety mechanisms with the same code

Other Use-Cases for Flexible Isolation

22

Deployment to heterogeneous hardware
Make optimal use of each machine/architecture's
safety mechanisms with the same code Quickly isolate vulnerable libraries

React easily and quickly to newly published
vulnerabilities while waiting for a full patch

Other Use-Cases for Flexible Isolation

23

Deployment to heterogeneous hardware
Make optimal use of each machine/architecture's
safety mechanisms with the same code Quickly isolate vulnerable libraries

React easily and quickly to newly published
vulnerabilities while waiting for a full patch

Incremental verification of code-bases
Mix and match verified and non-verified code-bases
while preserving guarantees

FlexOS 101: Approach in 4 points

24

FlexOS 101: Approach in 4 points

25

1 Focus on single-purpose appliances such as cloud microservices

FlexOS 101: Approach in 4 points

26

...the more applications run together, the least
specialization you can achieve

1 Focus on single-purpose appliances such as cloud microservices

FlexOS 101: Approach in 4 points

27

1 Focus on single-purpose appliances such as cloud microservices

Full-system (OS+app) understanding of compartmentalization 2

FlexOS 101: Approach in 4 points

28

1 Focus on single-purpose appliances such as cloud microservices

Full-system (OS+app) understanding of compartmentalization 2

Not "only application" or "only kernel":
consider everything and specialize

FlexOS 101: Approach in 4 points

29

1

Embrace the library OS philosophy: everything is a library...
network stack, nginx, libopenssl, sound driver, etc.

Focus on single-purpose appliances such as cloud microservices

Full-system (OS+app) understanding of compartmentalization 2

Not "only application" or "only kernel":
consider everything and specialize

FlexOS 101: Approach in 4 points

30

Focus on single-purpose appliances such as cloud microservices1

Abstract away the technical details of isolation mechanisms3

Full-system (OS+app) understanding of compartmentalization 2

FlexOS 101: Approach in 4 points

31

Page table, MPK, CHERI, TEEs? Not the same guarantees,
but a similar interface can be achieved.

Focus on single-purpose appliances such as cloud microservices1

Abstract away the technical details of isolation mechanisms3

Full-system (OS+app) understanding of compartmentalization 2

FlexOS 101: Approach in 4 points

32

Focus on single-purpose appliances such as cloud microservices1

Abstract away the technical details of isolation mechanisms3

Flexibility must not get into the way of performance 4

Full-system (OS+app) understanding of compartmentalization 2

FlexOS 101: Overview

33

FlexOS 101: Overview

34

compartments:
- comp1:
mechanism: intel-mpk
default: True

- comp2:
mechanism: intel-mpk

hardening: [cfi, asan]
libraries:
- libredis: comp1
- libopenjpg: comp2
- lwip: comp2

"Redis image with two compartments,
isolate libopenjpeg and lwip together"

config.yaml

FlexOS Toolchain
1 Input config

Happy users
config.yaml

FlexOS 101: Overview

35

compartments:
- comp1:
mechanism: intel-mpk
default: True

- comp2:
mechanism: intel-mpk

hardening: [cfi, asan]
libraries:
- libredis: comp1
- libopenjpg: comp2
- lwip: comp2

"Redis image with two compartments,
isolate libopenjpeg and lwip together"

config.yaml

FlexOS Toolchain
1 Input config

Happy users
config.yaml

FlexOS 101: Overview

36

compartments:
- comp1:
mechanism: intel-mpk
default: True

- comp2:
mechanism: intel-mpk

hardening: [cfi, asan]
libraries:
- libredis: comp1
- libopenjpg: comp2
- lwip: comp2

"Redis image with two compartments,
isolate libopenjpeg and lwip together"

config.yaml

FlexOS Toolchain
1 Input config

Happy users
config.yaml

FlexOS 101: Overview

37

MPK EPT ...

Isolation Backends

Select isolation
mechanism ("Backend")

2

FlexOS Toolchain
1 Input config

Happy users
config.yaml

FlexOS 101: Overview

38

MPK EPT ...

Isolation Backends

Select isolation
mechanism ("Backend")

2

boot sched mm

boot sched
vfs ...

boot
ramfs

Core Libraries

Kernel & User Libs

Select libraries (kernel and app),
rewrite, and statically put in
compartments

3

FlexOS Toolchain
1 Input config

Happy users
config.yaml

FlexOS 101: Overview

39

MPK EPT ...

Isolation Backends

Select isolation
mechanism ("Backend")

2

boot sched mm

boot sched
vfs ...

boot
ramfs

Core Libraries

Kernel & User Libs

Select libraries (kernel and app),
rewrite, and statically put in
compartments

3

mmboot sched

netdev

c
o
m
p
1

c
o
m
p
2

libssl

Generate image with appropriate isolation properties

MPK

mmboot sched

libopenjpeg

c
o
m
p
1

c
o
m
p
2

...

VMs
libssl

c
o
m
p
3

Possible Image 1 Possible Image 2

4

...

FlexOS Toolchain
1 Input config

Happy users
config.yaml

FlexOS 101: Overview

40

MPK EPT ...

Isolation Backends

Select isolation
mechanism ("Backend")

2

boot sched mm

boot sched
vfs ...

boot
ramfs

Core Libraries

Kernel & User Libs

Select libraries (kernel and app),
rewrite, and statically put in
compartments

3

mmboot sched

netdev

c
o
m
p
1

c
o
m
p
2

libssl

Generate image with appropriate isolation properties

MPK

mmboot sched

libopenjpeg

c
o
m
p
1

c
o
m
p
2

...

VMs
libssl

c
o
m
p
3

Possible Image 1 Possible Image 2

4

...

FlexOS Toolchain
1 Input config

Happy users
config.yaml

FlexOS 101: Mechanism Abstraction

41

Based on a highly modular LibOS design (Unikraft)

FlexOS 101: Mechanism Abstraction

42

Based on a highly modular LibOS design (Unikraft)

boot sched mm

ssl jpeg

vfs ...

nginx

ramfs

Core Libraries

Kernel & User Libs

Such libOSes are composed
of fine-granular,
independent libraries

FlexOS 101: Mechanism Abstraction

43

Reuse libraries as finest
granularity of
compartmentalization

Based on a highly modular LibOS design (Unikraft)

boot sched mm

ssl jpeg

vfs ...

nginx

ramfs

Core Libraries

Kernel & User Libs

Such libOSes are composed
of fine-granular,
independent libraries

FlexOS 101: Mechanism Abstraction

44

Reuse libraries as finest
granularity of
compartmentalization

Based on a highly modular LibOS design (Unikraft)

boot sched mm

ssl jpeg

vfs ...

nginx

ramfs

Core Libraries

Kernel & User Libs

Such libOSes are composed
of fine-granular,
independent libraries

Define them as part
of the FlexOS API

Cross-library calls and
shared data are replaced by
an abstract construct (gates,
data sharing primitives)

"Pre-compartmentalize" them

FlexOS 101: Mechanism Abstraction

45

Reuse libraries as finest
granularity of
compartmentalization

Based on a highly modular LibOS design (Unikraft)

boot sched mm

ssl jpeg

vfs ...

nginx

ramfs

Core Libraries

Kernel & User Libs

Such libOSes are composed
of fine-granular,
independent libraries

Define them as part
of the FlexOS API

Cross-library calls and
shared data are replaced by
an abstract construct (gates,
data sharing primitives)

"Pre-compartmentalize" them

At build time, these abstract
constructs are replaced with a
particular implementation by the
toolchain. These implementations
are defined by the backends.

MPK VMs TEEs ...

FlexOS 101: Compartmentalization API

46

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

FlexOS 101: Compartmentalization API

47

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

int rc, connfd;
char buf[512] __attribute__((flexos_share));
/* … */
rc = flexos_gate(liblwip, recv, connfd, buf, 512, 0);

Porting

FlexOS 101: Compartmentalization API

48

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

int rc, connfd;
char buf[512] __attribute__((flexos_share));
/* … */
rc = flexos_gate(liblwip, recv, connfd, buf, 512, 0);

Porting

Annotate shared data

FlexOS 101: Compartmentalization API

49

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

int rc, connfd;
char buf[512] __attribute__((flexos_share));
/* … */
rc = flexos_gate(liblwip, recv, connfd, buf, 512, 0);

Porting

Annotate shared data

Add gate placeholders

FlexOS 101: Compartmentalization API

50

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

int rc, connfd;
char buf[512] __attribute__((flexos_share));
/* … */
rc = flexos_gate(liblwip, recv, connfd, buf, 512, 0);

Porting

Annotate shared data

Add gate placeholders

int rc, connfd;
char *buf[512] = shared_malloc(512);
/* … */
rc = mpk_gate(0, 1, recv, connfd, buf, 512, 0);

Automatic gate
instantiation at
build time Coccinelle

lwip

app

1

0

FlexOS 101: Compartmentalization API

51

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

int rc, connfd;
char buf[512] __attribute__((flexos_share));
/* … */
rc = flexos_gate(liblwip, recv, connfd, buf, 512, 0);

Porting

Annotate shared data

Add gate placeholders

int rc, connfd;
char *buf[512] = shared_malloc(512);
/* … */
rc = mpk_gate(0, 1, recv, connfd, buf, 512, 0);

Automatic gate
instantiation at
build time Coccinelle

lwip

app

1

0

Replace with shared heap allocation

FlexOS 101: Compartmentalization API

52

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

int rc, connfd;
char buf[512] __attribute__((flexos_share));
/* … */
rc = flexos_gate(liblwip, recv, connfd, buf, 512, 0);

Porting

Annotate shared data

Add gate placeholders

int rc, connfd;
char *buf[512] = shared_malloc(512);
/* … */
rc = mpk_gate(0, 1, recv, connfd, buf, 512, 0);

Automatic gate
instantiation at
build time Coccinelle

lwip

app

1

0

Replace with shared heap allocation
Replace with MPK gate

FlexOS 101: Compartmentalization API

53

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

int rc, connfd;
char buf[512] __attribute__((flexos_share));
/* … */
rc = flexos_gate(liblwip, recv, connfd, buf, 512, 0);

Porting

Annotate shared data

Add gate placeholders

int rc, connfd;
char *buf[512] = shared_malloc(512);
/* … */
rc = mpk_gate(0, 1, recv, connfd, buf, 512, 0);

Automatic gate
instantiation at
build time Coccinelle

lwip

app

1

0

Replace with shared heap allocation
Replace with MPK gate

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

lwip + app

FlexOS 101: Compartmentalization API

54

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

int rc, connfd;
char buf[512] __attribute__((flexos_share));
/* … */
rc = flexos_gate(liblwip, recv, connfd, buf, 512, 0);

Porting

Annotate shared data

Add gate placeholders

int rc, connfd;
char *buf[512] = shared_malloc(512);
/* … */
rc = mpk_gate(0, 1, recv, connfd, buf, 512, 0);

Automatic gate
instantiation at
build time Coccinelle

lwip

app

1

0

Replace with shared heap allocation
Replace with MPK gate

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

lwip + appReplace with
normal stack
allocation

FlexOS 101: Compartmentalization API

55

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

int rc, connfd;
char buf[512] __attribute__((flexos_share));
/* … */
rc = flexos_gate(liblwip, recv, connfd, buf, 512, 0);

Porting

Annotate shared data

Add gate placeholders

int rc, connfd;
char *buf[512] = shared_malloc(512);
/* … */
rc = mpk_gate(0, 1, recv, connfd, buf, 512, 0);

Automatic gate
instantiation at
build time Coccinelle

lwip

app

1

0

Replace with shared heap allocation
Replace with MPK gate

int rc, connfd;
char buf[512];
/* … */
rc = recv(connfd, buf, 512, 0);

lwip + appReplace with
normal stack
allocation

Replace with
function call

Prototype

56

Implementation on top of Unikraft

Backend implementations for Intel MPK and VMs (EPT)

Port of libraries: network stack, scheduler, filesystem, time subsystem

Port of applications: Redis, Nginx, SQLite, iPerf server

Prototype

57

Implementation on top of Unikraft

Backend implementations for Intel MPK and VMs (EPT)

Port of libraries: network stack, scheduler, filesystem, time subsystem

Port of applications: Redis, Nginx, SQLite, iPerf server

This talk: focus on demonstrating flexibility and performance

more results in our paper

Flexibility

58

Flexibility

59

Runtime performance with Redis in requests/s

Flexibility

60

Runtime performance with Redis in requests/s

FlexOS libraries used in the Redis image
(only a subset for readability):
• Redis application
• C standard library (newlib)
• FlexOS scheduler (uksched)
• Network stack (lwip)

Flexibility

61

Runtime performance with Redis in requests/s

FlexOS libraries used in the Redis image
(only a subset for readability):
• Redis application
• C standard library (newlib)
• FlexOS scheduler (uksched)
• Network stack (lwip)

One configuration and its associated performance
(80 configurations in total)

Flexibility

62

Runtime performance with Redis in requests/s

FlexOS libraries used in the Redis image
(only a subset for readability):
• Redis application
• C standard library (newlib)
• FlexOS scheduler (uksched)
• Network stack (lwip)

One configuration and its associated performance
(80 configurations in total)

The color of boxes indicates the compartment:

Compartment 1 Compartment 2 Compartment 3

Flexibility

63

Runtime performance with Redis in requests/s

FlexOS libraries used in the Redis image
(only a subset for readability):
• Redis application
• C standard library (newlib)
• FlexOS scheduler (uksched)
• Network stack (lwip)

One configuration and its associated performance
(80 configurations in total)

The color of boxes indicates the compartment:

Compartment 1 Compartment 2 Compartment 3

The dot whether hardening (ASan, Safestack, etc.) is enabled:

Hardening on Hardening off

Flexibility

64

Compartment 1 Compartment 2 Compartment 3Hardening on Hardening off

1.2M requests/s292K requests/s
Large safety / performance space! (4x)1

Flexibility

65

Compartment 1 Compartment 2 Compartment 3Hardening on Hardening off

1.2M requests/s292K requests/s
Large safety / performance space! (4x)1

Smooth slope, performance degrades gracefully2

Flexibility

66

Compartment 1 Compartment 2 Compartment 3Hardening on Hardening off

Similar performance, very different properties!3

need to reason about communication patterns, fast paths

Flexibility

67

Compartment 1 Compartment 2 Compartment 3Hardening on Hardening off

Similar performance, very different properties!3

need to reason about communication patterns, fast paths

Flexibility

68

Compartment 1 Compartment 2 Compartment 3Hardening on Hardening off

lwip

uksched

...

lwip

uksched

...

Similar performance, very different properties!3

need to reason about communication patterns, fast paths

Flexibility

69

Compartment 1 Compartment 2 Compartment 3Hardening on Hardening off

lwip

uksched

...

lwip

uksched

...

Performance-wise:

=

2 crossings

2 crossings

Similar performance, very different properties!3

need to reason about communication patterns, fast paths

Flexibility

70

Compartment 1 Compartment 2 Compartment 3Hardening on Hardening off

lwip

uksched

...

lwip

uksched

...

Performance-wise:

=

2 crossings

2 crossings

Similar performance, very different properties!3

need to reason about communication patterns, fast paths

You can get some safety for
free by exploring intelligently

Performance

71

Performance

72

Time to perform 10K SQLite INSERT queries in seconds

Performance

73

Time to perform 10K SQLite INSERT queries in seconds

Number of compartments and mechanism (e.g., PT2 = 2
compartments with the page table)

Performance

74

Time to perform 10K SQLite INSERT queries in seconds

Number of compartments and mechanism (e.g., PT2 = 2
compartments with the page table)

VMM/environment

Performance

75

No overhead when disabling isolation – you only pay for what you get1

Performance

76

The MPK backend compares very positively to competing solutions2

Performance

77

The MPK backend compares very positively to competing solutions2

Tricky comparison with CubicleOS - they're using linuxu, a Linux userland
debug platform of Unikraft

1.96x

2.37x

Performance

78

The EPT backend too compares positively to competing solutions3

Exploring the Design Space

79

Now, we've a nice framework!

We can leverage FlexOS to get the most secure image for a given
performance budget!

Exploring the Design Space

80

Now, we've a nice framework!

We can leverage FlexOS to get the most secure image for a given
performance budget!

Problem: some configurations are not comparable

Exploring the Design Space

81

Now, we've a nice framework!

We can leverage FlexOS to get the most secure image for a given
performance budget!

Problem: some configurations are not comparable

lwip

uksched

nginx

...

ASan

ASan

lwip

uksched

nginx

...

ASanSafeStack>
<
=

Exploring the Design Space

82

Now, we've a nice framework!

We can leverage FlexOS to get the most secure image for a given
performance budget!

Problem: some configurations are not comparable

lwip

uksched

nginx

...

ASan

ASan

lwip

uksched

nginx

...

ASanSafeStack>
<
=

How can we reason about
security/performance
trade-offs?

Exploring the Design Space

83

What we propose: consider configurations as a
partially ordered set (poset)

Exploring the Design Space

84

What we propose: consider configurations as a
partially ordered set (poset)

-
-

ASan
-

-
ASan

SafeStack
-

SafeStack

Both
ASan

SafeStack
Both Both

SafeStack
ASan
Both

Both
Both

ASan
SafeStack

ASan
ASan

SafeStack
ASan

SafeStack
SafeStack

...

...

Exploring the Design Space

85

What we propose: consider configurations as a
partially ordered set (poset)

-
-

ASan
-

-
ASan

SafeStack
-

SafeStack

Both
ASan

SafeStack
Both Both

SafeStack
ASan
Both

Both
Both

ASan
SafeStack

ASan
ASan

SafeStack
ASan

SafeStack
SafeStack

...

...

ASan
- ASan

ASan

Exploring the Design Space

86

What we propose: consider configurations as a
partially ordered set (poset)

-
-

ASan
-

-
ASan

SafeStack
-

SafeStack

Both
ASan

SafeStack
Both Both

SafeStack
ASan
Both

Both
Both

ASan
SafeStack

ASan
ASan

SafeStack
ASan

SafeStack
SafeStack

...

...

Two configurations that do not share a
path are simply not comparable

Both
ASan

SafeStack
Both

ASan
- ASan

ASan

Exploring the Design Space

87

We can then label each node with performance
characteristics (in practice no need to label everything)

-
-

ASan
-

-
ASan

SafeStack
-

SafeStack

Both
ASan

SafeStack
Both Both

SafeStack
ASan
Both

Both
Both

ASan
SafeStack

ASan
ASan

SafeStack
ASan

SafeStack
SafeStack

...

...

22

19

19

20

19

17

18

16

12

09

04

11 07

11

Fictive numbers here

Exploring the Design Space

88

Based on this ordering and labeling we can choose the
last node of each path that satisfies the performance
constraints

-
-

ASan
-

-
ASan

SafeStack
-

SafeStack

Both
ASan

SafeStack
Both Both

SafeStack
ASan
Both

Both
Both

ASan
SafeStack

ASan
ASan

SafeStack
ASan

SafeStack
SafeStack

...

...

22

19

19

20

19

17

18

16

12

09

04

11 07

11

Exploring the Design Space

89

Based on this ordering and labeling we can choose the
last node of each path that satisfies the performance
constraints

-
-

ASan
-

-
ASan

SafeStack
-

SafeStack

Both
ASan

SafeStack
Both Both

SafeStack
ASan
Both

Both
Both

ASan
SafeStack

ASan
ASan

SafeStack
ASan

SafeStack
SafeStack

...

...

22

19

19

20

19

17

18

16

12

09

04

11 07

11

Both
ASan

Both
SafeStack

Curated list of optimal configurations

Let the user do
the final choice

Exploring the Design Space

90

Based on this ordering and labeling we can choose the
last node of each path that satisfies the performance
constraints

-
-

ASan
-

-
ASan

SafeStack
-

SafeStack

Both
ASan

SafeStack
Both Both

SafeStack
ASan
Both

Both
Both

ASan
SafeStack

ASan
ASan

SafeStack
ASan

SafeStack
SafeStack

...

...

22

19

19

20

19

17

18

16

12

09

04

11 07

11

Both
ASan

Both
SafeStack

Curated list of optimal configurations

Let the user do
the final choice

No need to evaluate everything!

Applying POSets on Redis

91

Reduction of 80
configurations to 5
candidates

In a Nutshell

92

There is a need for isolation flexibility
• OS Specialization, hardware heterogeneity
• or quickly react to vulnerabilities!

Current approaches: one isolation approach at design time

Decouple isolation from the OS design:
• Make isolation decisions at build time
• Explore performance v.s. security trade-offs

Paper-Related Links

93

Webpage: https://project-flexos.github.io/
ASPLOS'22 paper: https://owl.eu.com/papers/flexos-asplos22.pdf
Contact by e-mail: hugo.lefeuvre@manchester.ac.uk

Artifact Evaluation Repository: https://github.com/project-flexos/asplos22-ae
Distinguished Artifact Award!

Practical note: most of the bug reports are reported in the AE repository.
Also check known issues and doc in: https://github.com/project-flexos/unikraft

License: 3-Clause BSD License (like Unikraft)

https://project-flexos.github.io/
https://owl.eu.com/papers/flexos-asplos22.pdf
https://github.com/project-flexos/asplos22-ae
https://github.com/project-flexos/unikraft

FlexOS: Illustrating the Research
Potential of Unikraft

94

Outline:

1. High-Level Presentation of FlexOS

2. Technical Intro: Hello World!

3. Technical Intro: Redis

4. Hands-On: Port Your Lib/App

Hugo Lefeuvre (The University of Manchester)
hugo.lefeuvre@manchester.ac.uk

Unikraft Lyon Hackathon, 14th May 2022

Get Your FlexOS Dev Shell

95

• We set up 48 Docker Containers on an MPK-enabled machine at Manchester
• They contain everything we need for this workshop!

Get Your FlexOS Dev Shell

96

• We set up 48 Docker Containers on an MPK-enabled machine at Manchester
• They contain everything we need for this workshop!

Credentials will be given during the tutorial!

Disclaimer :-)

97

• This is a research prototype
• It has been written by a grad student with limited time
• It is not fit for production
• The VM/EPT backend that we are going to use is not the final one

(not merged yet unfortunately)

Disclaimer :-)

98

• This is a research prototype
• It has been written by a grad student with limited time
• It is not fit for production
• The VM/EPT backend that we are going to use is not the final one

(not merged yet unfortunately)

But:
• It works (modulo bugs)

Technical Intro: Hello World!

99

Recap of the FlexOS compartmentalization process:

Technical Intro: Hello World!

100

Recap of the FlexOS compartmentalization process:

1. Apps/Libs are ported by an expert

Technical Intro: Hello World!

101

Recap of the FlexOS compartmentalization process:

1. Apps/Libs are ported by an expert
2. At build time, users define a compartmentalization conformation

Technical Intro: Hello World!

102

Recap of the FlexOS compartmentalization process:

1. Apps/Libs are ported by an expert
2. At build time, users define a compartmentalization conformation
3. The toolchain automatically produces a matching image

Technical Intro: Hello World!

103

Recap of the FlexOS compartmentalization process:

1. Apps/Libs are ported by an expert
2. At build time, users define a compartmentalization conformation
3. The toolchain automatically produces a matching image

Technical Intro: Hello World!

104

void callback(int foo)
{

printf("callback called!\n");
}

/* static buffer that we pass to the library */
static char static_buf[32];

/* a private static buffer */
static char static_app_secret[32];

int main(int __unused argc, char __unused *argv[])
{

/* shared stack integer */
int stack_int = 21;

/* shared stack buffer */
char stack_buf[32];

/* call library function */
lib_func(&callback, static_buf,

&stack_int, stack_buf);

return 0;
}

Application main (slightly simplified)

Technical Intro: Hello World!

105

void callback(int foo)
{

printf("callback called!\n");
}

/* static buffer that we pass to the library */
static char static_buf[32];

/* a private static buffer */
static char static_app_secret[32];

int main(int __unused argc, char __unused *argv[])
{

/* shared stack integer */
int stack_int = 21;

/* shared stack buffer */
char stack_buf[32];

/* call library function */
lib_func(&callback, static_buf,

&stack_int, stack_buf);

return 0;
}

Application main (slightly simplified)

We have shared callbacks

Technical Intro: Hello World!

106

void callback(int foo)
{

printf("callback called!\n");
}

/* static buffer that we pass to the library */
static char static_buf[32];

/* a private static buffer */
static char static_app_secret[32];

int main(int __unused argc, char __unused *argv[])
{

/* shared stack integer */
int stack_int = 21;

/* shared stack buffer */
char stack_buf[32];

/* call library function */
lib_func(&callback, static_buf,

&stack_int, stack_buf);

return 0;
}

Application main (slightly simplified)

We have shared callbacks

…shared static buffers

Technical Intro: Hello World!

107

void callback(int foo)
{

printf("callback called!\n");
}

/* static buffer that we pass to the library */
static char static_buf[32];

/* a private static buffer */
static char static_app_secret[32];

int main(int __unused argc, char __unused *argv[])
{

/* shared stack integer */
int stack_int = 21;

/* shared stack buffer */
char stack_buf[32];

/* call library function */
lib_func(&callback, static_buf,

&stack_int, stack_buf);

return 0;
}

Application main (slightly simplified)

We have shared callbacks

…shared static buffers

…shared stack buffers

Technical Intro: Hello World!

108

void callback(int foo)
{

printf("callback called!\n");
}

/* static buffer that we pass to the library */
static char static_buf[32];

/* a private static buffer */
static char static_app_secret[32];

int main(int __unused argc, char __unused *argv[])
{

/* shared stack integer */
int stack_int = 21;

/* shared stack buffer */
char stack_buf[32];

/* call library function */
lib_func(&callback, static_buf,

&stack_int, stack_buf);

return 0;
}

Application main (slightly simplified)

We have shared callbacks

…shared static buffers

…shared stack buffers

…and a library call

Technical Intro: Hello World!

109

$ ssh $(your container)
cd /root/.unikraft/apps/flexos-example
cp kraft.yaml.fcalls kraft.yaml
kraft configure
…

Let's run it! (without isolation for now)

Why is --initrd needed? https://github.com/project-flexos/asplos22-ae/issues/1

https://github.com/project-flexos/asplos22-ae/issues/1

Technical Intro: Hello World!

110

$ ssh $(your container)
cd /root/.unikraft/apps/flexos-example
cp kraft.yaml.fcalls kraft.yaml
kraft configure
…
make prepare && kraft -v build --no-progress --fast --compartmentalize
…

Let's run it! (without isolation for now)

Why is --initrd needed? https://github.com/project-flexos/asplos22-ae/issues/1

https://github.com/project-flexos/asplos22-ae/issues/1

Technical Intro: Hello World!

111

$ ssh $(your container)
cd /root/.unikraft/apps/flexos-example
cp kraft.yaml.fcalls kraft.yaml
kraft configure
…
make prepare && kraft -v build --no-progress --fast --compartmentalize
…
kraft run --initrd /root/img.cpio -M 200
SeaBIOS (version 1.12.0-1)
Booting from ROM..[0.000000] ERR: [libkvmplat] <mm.c @ 190> ...
callback called!

Let's run it! (without isolation for now)

Why is --initrd needed? https://github.com/project-flexos/asplos22-ae/issues/1

https://github.com/project-flexos/asplos22-ae/issues/1

Technical Intro: Hello World!

112

Recap of the FlexOS compartmentalization process:

1. Apps/Libs are ported by an expert
2. At build time, users define a compartmentalization conformation
3. The toolchain automatically produces a matching image

Technical Intro: Hello World!

113

$ ssh $(your container)
cd /root/.unikraft/apps/flexos-example
kraftcleanup
cp kraft.yaml.mpk kraft.yaml
rm .config && kraft configure
…

Let's run it with isolation?

kraftcleanup removes all stale source transformations

Technical Intro: Hello World!

114

$ ssh $(your container)
cd /root/.unikraft/apps/flexos-example
kraftcleanup
cp kraft.yaml.mpk kraft.yaml
rm .config && kraft configure
…
make prepare && kraft -v build --no-progress --fast --compartmentalize
…

Let's run it with isolation?

kraftcleanup removes all stale source transformations

Technical Intro: Hello World!

115

$ ssh $(your container)
cd /root/.unikraft/apps/flexos-example
kraftcleanup
cp kraft.yaml.mpk kraft.yaml
rm .config && kraft configure
…
make prepare && kraft -v build --no-progress --fast --compartmentalize
…
kraft run --initrd /root/img.cpio -M 200
…

Let's run it with isolation?

kraftcleanup removes all stale source transformations

Technical Intro: Hello World!

116

$ ssh $(your container)
cd /root/.unikraft/apps/flexos-example
kraftcleanup
cp kraft.yaml.mpk kraft.yaml
rm .config && kraft configure
…
make prepare && kraft -v build --no-progress --fast --compartmentalize
…
kraft run --initrd /root/img.cpio -M 200
…

Let's run it with isolation?

kraftcleanup removes all stale source transformations

We need to port it :-)

Technical Intro: Hello World Porting

117

Application main (slightly simplified)

void callback(int foo)
{

printf("callback called!\n");
}

/* static buffer that we pass to the library */
static char static_buf[32];

/* a private static buffer */
static char static_app_secret[32];

int main(int __unused argc, char __unused *argv[])
{

/* shared stack integer */
int stack_int = 21;

/* shared stack buffer */
char stack_buf[32];

/* call library function */
lib_func(&callback, static_buf,

&stack_int, stack_buf);

return 0;
}

Technical Intro: Hello World Porting

118

Application main (slightly simplified)

__attribute__((libflexosexample_callback))
void callback(int foo)
{

printf("callback called!\n");
}

/* static buffer that we pass to the library */
static char static_buf[32];

/* a private static buffer */
static char static_app_secret[32];

int main(int __unused argc, char __unused *argv[])
{

/* shared stack integer */
int stack_int = 21;

/* shared stack buffer */
char stack_buf[32];

/* call library function */
lib_func(&callback, static_buf,

&stack_int, stack_buf);

return 0;
}

Annotate callbacks

Technical Intro: Hello World Porting

119

__attribute__((libflexosexample_callback))
void callback(int foo)
{

printf("callback called!\n");
}

/* static buffer that we pass to the library */
static char static_buf[32] __attribute__((flexos_whitelist));

/* a private static buffer */
static char static_app_secret[32];

int main(int __unused argc, char __unused *argv[])
{

/* shared stack integer */
int stack_int = 21;

/* shared stack buffer */
char stack_buf[32];

/* call library function */
lib_func(&callback, static_buf,

&stack_int, stack_buf);

return 0;
}

Application main (slightly simplified)

Annotate callbacks

Annotate static shared buffers

Technical Intro: Hello World Porting

120

__attribute__((libflexosexample_callback))
void callback(int foo)
{

printf("callback called!\n");
}

/* static buffer that we pass to the library */
static char static_buf[32] __attribute__((flexos_whitelist));

/* a private static buffer */
static char static_app_secret[32];

int main(int __unused argc, char __unused *argv[])
{

/* shared stack integer */
int stack_int __attribute__((flexos_whitelist)) = 21;

/* shared stack buffer */
char stack_buf[32] __attribute__((flexos_whitelist));

/* call library function */
lib_func(&callback, static_buf,

&stack_int, stack_buf);

return 0;
}

Application main (slightly simplified)

Annotate callbacks

Annotate static shared buffers

Annotate stack shared buffers

Technical Intro: Hello World Porting

121

__attribute__((libflexosexample_callback))
void callback(int foo)
{

printf("callback called!\n");
}

/* static buffer that we pass to the library */
static char static_buf[32] __attribute__((flexos_whitelist));

/* a private static buffer */
static char static_app_secret[32];

int main(int __unused argc, char __unused *argv[])
{

/* shared stack integer */
int stack_int __attribute__((flexos_whitelist)) = 21;

/* shared stack buffer */
char stack_buf[32] __attribute__((flexos_whitelist));

/* call library function */
flexos_gate(libflexosexample, lib_func, &callback, static_buf,

&stack_int, stack_buf);

return 0;
}

Application main (slightly simplified)

Annotate callbacks

Annotate static shared buffers

Annotate stack shared buffers

Add gate placeholders

Technical Intro: Hello World!

122

$ ssh $(your container)
cd /root/.unikraft/apps/flexos-example
kraftcleanup
git checkout lyon-workshop-ported
cp kraft.yaml.mpk kraft.yaml
rm .config && kraft configure
…
make prepare && kraft -v build --no-progress --fast --compartmentalize
…
kraft run --initrd /root/img.cpio -M 200
SeaBIOS (version 1.12.0-1)
Booting from ROM..[0.000000] ERR: [libkvmplat] <mm.c @ 190> ...
callback called!

Let's run it with isolation! (MPK)

This branch = lyon-workshop,
ported like in the previous slide

Technical Intro: Hello World Porting

123

$ ssh $(your container)
…
kraftcleanup
cd /root/.unikraft
./porthelper.sh apps/flexos-example/main.c

Insert gates using our porting helpers:

Technical Intro: Hello World Porting

124

$ ssh $(your container)
…
kraftcleanup
cd /root/.unikraft
./porthelper.sh apps/flexos-example/main.c

Insert gates using our porting helpers:

Does a pretty good job, but no rocket science. Does not handle shared data.

The true solution is in the compiler, and that's not a contribution of this paper.

(see PtrSplit @CCS'17, Cali @AsiaCCS'21, etc.)

Technical Intro: Hello World!

125

$ ssh $(your container)
cd /root/.unikraft/apps/flexos-example
kraftcleanup
git checkout lyon-workshop-ported
cp kraft.yaml.ept kraft.yaml
rm .config && kraft configure
…
make prepare && kraft -v build --fast --compartmentalize
…
/root/.unikraft/run-ept.sh run build/flexos-example_kvm-x86_64
SeaBIOS (version 1.12.0-1)
Booting from ROM..[0.000000] ERR: [libkvmplat] <mm.c @ 190> ...
callback called!

Let's run it with isolation! (EPT)

Do not put --no-progress here, this
triggers a bug in the toolchain for EPT
https://github.com/project-flexos/asplos22-ae/issues/2

Do not use kraft run here; the integration has not been merged yet...
https://github.com/project-flexos/asplos22-ae/issues/3

https://github.com/project-flexos/asplos22-ae/issues/2
https://github.com/project-flexos/asplos22-ae/issues/3

Technical Intro: Hello World!

126

Recap of the FlexOS compartmentalization process:

1. Apps/Libs are ported by an expert
2. At build time, users define a compartmentalization conformation
3. The toolchain automatically produces a matching image

How to inspect the transformations performed by FlexOS?

How to debug FlexOS compartmentalization issues?

How can I peek at FlexOS' internals?

Technical Intro: Transformations

127

$ ssh $(your container)
cd /root/.unikraft/apps/flexos-example

How do the transformations look?

Benefits of source transformations: use git diff and read patch output :-)

Technical Intro: Transformations

128

$ ssh $(your container)
cd /root/.unikraft/apps/flexos-example && git diff
diff --git a/main.c b/main.c
index df230c3..5f4ba6d 100644
--- a/main.c
+++ b/main.c
@@ -34,20 +34,26 @@
… <snip>
@@ -58,15 +64,18 @@ int main(int __unused argc, char __unused *argv[])

static_app_secret[0] = 'B';

/* shared stack integer used by the library */
- int stack_int __attribute__((flexos_whitelist)) = 21;
+ int * stack_int = uk_malloc(flexos_shared_alloc, sizeof(int));
+ *stack_int = 21;
… <snip>
}

How do the transformations look?

Benefits of source transformations: use git diff and read patch output :-)

Technical Intro: Debugging

129

How do you debug porting issues?

Technical Intro: Debugging

130

How do you debug porting issues?

say we forgot some shared data
static_app_secret[0] = 'B';

/* shared stack integer used by the library */
- int stack_int __attribute__((flexos_whitelist)) = 21;

+ int stack_int = 21;

/* shared stack buffer that we pass to the library */
char stack_buf[32] __attribute__((flexos_whitelist));

Technical Intro: Debugging

131

How do you debug porting issues?

say we forgot some shared data
static_app_secret[0] = 'B';

/* shared stack integer used by the library */
- int stack_int __attribute__((flexos_whitelist)) = 21;

+ int stack_int = 21;

/* shared stack buffer that we pass to the library */
char stack_buf[32] __attribute__((flexos_whitelist));$ ssh $(your container)

…
kraft run …
[0.100770] CRIT: [libkvmplat] <traps.c @ 198> Page fault at linear address 4000dff9c, rip 1962ac, regs 0x1dff50, sp
40011ffd0, our_sp 0x1dfee8, code 23
[0.106650] CRIT: [libkvmplat] <traps.c @ 198> PF_PK: protection key block access (WRITE)
[0.110337] CRIT: [libkvmplat] <traps.c @ 198> Target page 0x4000dff9c (section .heap) had key 0
[0.114256] CRIT: [libkvmplat] <trace.c @ 198> RIP: 00000000001962ac CS: 0008
[0.117436] CRIT: [libkvmplat] <trace.c @ 198> RSP: 000000040011ffd0 SS: 0010 EFLAGS: 00010202
[0.121292] CRIT: [libkvmplat] <trace.c @ 198> RAX: 0000000000108100 RBX: 000000040a001cc8 RCX: 000000040a001cc8
[0.125842] CRIT: [libkvmplat] <trace.c @ 198> RDX: 00000004000dff9c RSI: 0000000000105320 RDI: 0000000000000054
[0.130382] CRIT: [libkvmplat] <trace.c @ 198> RBP: 000000040011ffd0 R08: 000000040a001ca8 R09: 00000000fffffffe
[0.134938] CRIT: [libkvmplat] <trace.c @ 198> R10: 000000040a001ce8 R11: 00000000001b5330 R12: 00000004000dff9c
[0.139488] CRIT: [libkvmplat] <trace.c @ 198> R13: 000000040a001cc8 R14: 0000000005f66fa5 R15: 0000000000000001
[0.144041] CRIT: [libkvmplat] <traps.c @ 198> PKU: 000000003ffffff3
[0.146893] CRIT: [libkvmplat] <trace.c @ 198> base is 0x40011ffd0 caller is 0x1963f6
[0.150432] CRIT: [libkvmplat] <trace.c @ 198> base is 0x40011ffe8 caller is 0

Technical Intro: Debugging

132

How do you debug porting issues?

Unikraft 0.5 (on which we based FlexOS) did not have symbolized stack traces...

say we forgot some shared data
static_app_secret[0] = 'B';

/* shared stack integer used by the library */
- int stack_int __attribute__((flexos_whitelist)) = 21;

+ int stack_int = 21;

/* shared stack buffer that we pass to the library */
char stack_buf[32] __attribute__((flexos_whitelist));$ ssh $(your container)

…
kraft run …
[0.100770] CRIT: [libkvmplat] <traps.c @ 198> Page fault at linear address 4000dff9c, rip 1962ac, regs 0x1dff50, sp
40011ffd0, our_sp 0x1dfee8, code 23
[0.106650] CRIT: [libkvmplat] <traps.c @ 198> PF_PK: protection key block access (WRITE)
[0.110337] CRIT: [libkvmplat] <traps.c @ 198> Target page 0x4000dff9c (section .heap) had key 0
[0.114256] CRIT: [libkvmplat] <trace.c @ 198> RIP: 00000000001962ac CS: 0008
[0.117436] CRIT: [libkvmplat] <trace.c @ 198> RSP: 000000040011ffd0 SS: 0010 EFLAGS: 00010202
[0.121292] CRIT: [libkvmplat] <trace.c @ 198> RAX: 0000000000108100 RBX: 000000040a001cc8 RCX: 000000040a001cc8
[0.125842] CRIT: [libkvmplat] <trace.c @ 198> RDX: 00000004000dff9c RSI: 0000000000105320 RDI: 0000000000000054
[0.130382] CRIT: [libkvmplat] <trace.c @ 198> RBP: 000000040011ffd0 R08: 000000040a001ca8 R09: 00000000fffffffe
[0.134938] CRIT: [libkvmplat] <trace.c @ 198> R10: 000000040a001ce8 R11: 00000000001b5330 R12: 00000004000dff9c
[0.139488] CRIT: [libkvmplat] <trace.c @ 198> R13: 000000040a001cc8 R14: 0000000005f66fa5 R15: 0000000000000001
[0.144041] CRIT: [libkvmplat] <traps.c @ 198> PKU: 000000003ffffff3
[0.146893] CRIT: [libkvmplat] <trace.c @ 198> base is 0x40011ffd0 caller is 0x1963f6
[0.150432] CRIT: [libkvmplat] <trace.c @ 198> base is 0x40011ffe8 caller is 0

Technical Intro: Debugging

133

How do you debug porting issues?

Unikraft 0.5 (on which we based FlexOS) did not have symbolized stack traces...

say we forgot some shared data
static_app_secret[0] = 'B';

/* shared stack integer used by the library */
- int stack_int __attribute__((flexos_whitelist)) = 21;

+ int stack_int = 21;

/* shared stack buffer that we pass to the library */
char stack_buf[32] __attribute__((flexos_whitelist));$ ssh $(your container)

…
kraft run …
[0.100770] CRIT: [libkvmplat] <traps.c @ 198> Page fault at linear address 4000dff9c, rip 1962ac, regs 0x1dff50, sp
40011ffd0, our_sp 0x1dfee8, code 23
[0.106650] CRIT: [libkvmplat] <traps.c @ 198> PF_PK: protection key block access (WRITE)
[0.110337] CRIT: [libkvmplat] <traps.c @ 198> Target page 0x4000dff9c (section .heap) had key 0
[0.114256] CRIT: [libkvmplat] <trace.c @ 198> RIP: 00000000001962ac CS: 0008
[0.117436] CRIT: [libkvmplat] <trace.c @ 198> RSP: 000000040011ffd0 SS: 0010 EFLAGS: 00010202
[0.121292] CRIT: [libkvmplat] <trace.c @ 198> RAX: 0000000000108100 RBX: 000000040a001cc8 RCX: 000000040a001cc8
[0.125842] CRIT: [libkvmplat] <trace.c @ 198> RDX: 00000004000dff9c RSI: 0000000000105320 RDI: 0000000000000054
[0.130382] CRIT: [libkvmplat] <trace.c @ 198> RBP: 000000040011ffd0 R08: 000000040a001ca8 R09: 00000000fffffffe
[0.134938] CRIT: [libkvmplat] <trace.c @ 198> R10: 000000040a001ce8 R11: 00000000001b5330 R12: 00000004000dff9c
[0.139488] CRIT: [libkvmplat] <trace.c @ 198> R13: 000000040a001cc8 R14: 0000000005f66fa5 R15: 0000000000000001
[0.144041] CRIT: [libkvmplat] <traps.c @ 198> PKU: 000000003ffffff3
[0.146893] CRIT: [libkvmplat] <trace.c @ 198> base is 0x40011ffd0 caller is 0x1963f6
[0.150432] CRIT: [libkvmplat] <trace.c @ 198> base is 0x40011ffe8 caller is 0

addr2line 0x00000000001962ac -e build/flexos-example_kvm-x86_64.dbg
/root/.unikraft/libs/flexos-example/isolated.c:42

Technical Intro: Debugging

134

How do you debug porting issues?

Unikraft 0.5 (on which we based FlexOS) did not have symbolized stack traces...

say we forgot some shared data
static_app_secret[0] = 'B';

/* shared stack integer used by the library */
- int stack_int __attribute__((flexos_whitelist)) = 21;

+ int stack_int = 21;

/* shared stack buffer that we pass to the library */
char stack_buf[32] __attribute__((flexos_whitelist));$ ssh $(your container)

…
kraft run …
[0.100770] CRIT: [libkvmplat] <traps.c @ 198> Page fault at linear address 4000dff9c, rip 1962ac, regs 0x1dff50, sp
40011ffd0, our_sp 0x1dfee8, code 23
[0.106650] CRIT: [libkvmplat] <traps.c @ 198> PF_PK: protection key block access (WRITE)
[0.110337] CRIT: [libkvmplat] <traps.c @ 198> Target page 0x4000dff9c (section .heap) had key 0
[0.114256] CRIT: [libkvmplat] <trace.c @ 198> RIP: 00000000001962ac CS: 0008
[0.117436] CRIT: [libkvmplat] <trace.c @ 198> RSP: 000000040011ffd0 SS: 0010 EFLAGS: 00010202
[0.121292] CRIT: [libkvmplat] <trace.c @ 198> RAX: 0000000000108100 RBX: 000000040a001cc8 RCX: 000000040a001cc8
[0.125842] CRIT: [libkvmplat] <trace.c @ 198> RDX: 00000004000dff9c RSI: 0000000000105320 RDI: 0000000000000054
[0.130382] CRIT: [libkvmplat] <trace.c @ 198> RBP: 000000040011ffd0 R08: 000000040a001ca8 R09: 00000000fffffffe
[0.134938] CRIT: [libkvmplat] <trace.c @ 198> R10: 000000040a001ce8 R11: 00000000001b5330 R12: 00000004000dff9c
[0.139488] CRIT: [libkvmplat] <trace.c @ 198> R13: 000000040a001cc8 R14: 0000000005f66fa5 R15: 0000000000000001
[0.144041] CRIT: [libkvmplat] <traps.c @ 198> PKU: 000000003ffffff3
[0.146893] CRIT: [libkvmplat] <trace.c @ 198> base is 0x40011ffd0 caller is 0x1963f6
[0.150432] CRIT: [libkvmplat] <trace.c @ 198> base is 0x40011ffe8 caller is 0

addr2line 0x00000000001962ac -e build/flexos-example_kvm-x86_64.dbg
/root/.unikraft/libs/flexos-example/isolated.c:42
cat /root/.unikraft/libs/flexos-example/isolated.c
...

36 void lib_func(void (*callback)(int), char *static_buf,
37 int *stack_int, char *stack_buf)
38 {
39 /* use all arguments */
40 *static_buf = '\0';
41 *stack_buf = '\0';
42 *stack_int = 42;
43 callback(84);
44 }

...

FlexOS: Illustrating the Research
Potential of Unikraft

135

Outline:

1. High-Level Presentation of FlexOS

2. Technical Intro: Hello World!

3. Hands-On: Port Your Lib/App

Hugo Lefeuvre (The University of Manchester)
hugo.lefeuvre@manchester.ac.uk

Unikraft Lyon Hackathon, 14th May 2022

Hands-On: Port Your Lib/App

136

Stuff that we can try porting/running in isolation together:

• Libzlib + a zlib example
• Library: https://github.com/project-flexos/lib-zlib
• Application: https://github.com/project-flexos/app-zlib-example

(or whatever you want that
runs on Unikraft)

https://github.com/project-flexos/lib-zlib
https://github.com/project-flexos/app-zlib-example

Hands-On: Port Your Lib/App

137

Stuff that we can try porting/running in isolation together:

• Libzlib + a zlib example
• Library: https://github.com/project-flexos/lib-zlib
• Application: https://github.com/project-flexos/app-zlib-example

$ ssh $(your container)
cd /root/.unikraft/apps/zlib-example && kraftcleanup
kraft configure
…
make prepare && kraft -v build --no-progress --fast --compartmentalize
…
kraft run --initrd ./zlib.cpio -M 200
SeaBIOS (version 1.12.0-1)
Booting from ROM..[0.000000] ERR: [libkvmplat] <mm.c @ 190> ...
...

(or whatever you want that
runs on Unikraft)

(h
o

w
 t

o
 r

u
n

 it
)

https://github.com/project-flexos/lib-zlib
https://github.com/project-flexos/app-zlib-example

